AB295. SPR-22 Functional relevance of purinergic P2X4R in bladder smooth muscle

نویسندگان

  • Vivian Cristofaro
  • Josephine A. Carew
  • Sean D. Carey
  • Raj K. Goyal
  • Maryrose P. Sullivan
چکیده

Objective: Under physiologic conditions in animals and pathologic conditions in humans, purinergic mechanisms contribute significantly to detrusor contractions. Although the activation of P2X1 receptors (P2X1R) accounts for the largest portion of bladder smooth muscle (BSM) responses to ATP, previous reports have shown that P2X1R antagonists do not completely abolish the purinergic component of neurogenic contractions, suggesting the presence of other P2XR subtypes on BSM. P2X4R has been identified in bladder tissue, however whether this receptor is functionally relevant warrants investigation. The aim of this study was to examine the extent of P2X4R expression in BSM tissue and to investigate its pharmacological contribution to ATP-mediated detrusor contractions. Methods: P2X4R mRNA and protein expression was investigated in mouse bladder tissue (without mucosa) and in cultured BSM cells by real-time RT-PCR and western blotting respectively. In vitro isometric tension studies were performed in mouse BSM strips without mucosa. Purinergic detrusor contractions were elicited by administration of α-β-methylene-ATP (αβmATP), and the purinergic component of neurogenic contractions induced by electrical field stimulations (EFS) was isolated by pre-treatment with the muscarinic receptor antagonist atropine. The inhibitory effect of two P2X4R selective antagonists, 5-BDBD and BX430, on the αβmATPand EFS-induced contractions was investigated in the presence of P2X1R antagonist NF449. In addition, the effect of the P2X4R positive modulator ivermectin (IVC) on αβmATP responses was investigated. Data were analyzed by a repeated measures analysis of variance. Results: P2X4R mRNA was detected in smooth muscle from both bladder tissue and cultured BSM cells, although its expression was significantly lower than P2X1R expression. Immunoreactivity for P2X4R was detected in lysates from both mouse BSM tissue and smooth muscle cells. Functional studies indicated that although P2X1R activation is predominantly responsible for purinergic contractions in mouse detrusor, a significant portion of the contractile response to both αβmATP (22.3±7%) and EFS (27.5±4% of purinergic component of EFS) was resistant to P2X1R inhibition. This NF449-resistant component was abolished by administration of P2X4R antagonists 5-BDBD or BX430. In addition, responses to αβmATP increased significantly upon administration of IVC. Conclusions: The expression of P2X4R in detrusor smooth muscle together with the identification of a P2X4Rsensitive component of bladder contractions suggest that the activation of this P2X receptor subtype could significantly contribute to ATP-mediated BSM responses. P2X4R may thus potentially represent a novel target for the management of detrusor dysfunctions associated with alterations in purinergic signaling. Funding Source(s): Department of Veterans Affairs, Research Service BX001790; BX002806

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis.

Purinergic mechanisms appear to be involved in motor as well as sensory functions in the urinary bladder. ATP released from efferent nerves excites bladder smooth muscle, whereas ATP released from urothelial cells can activate afferent nerves and urothelial cells. In the present study, we used immunohistochemical techniques to examine the distribution of purinoceptors in the urothelium, smooth ...

متن کامل

Expression and Distribution of Ectonucleotidases in Mouse Urinary Bladder

BACKGROUND Normal urinary bladder function requires bidirectional molecular communication between urothelium, detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP. Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors. Little is known about the role of these enzymes i...

متن کامل

Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice.

P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP‑P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X...

متن کامل

Purinergic and muscarinic modulation of ATP release from the urothelium and its paracrine actions

The urothelium is a newly recognized sensory structure that detects bladder fullness. Pivotal to this sensory role is the release of ATP from the urothelium. However, the routes for urothelial ATP release, its modulation by receptor-mediated pathways, and the autocrine/paracrine role of ATP are poorly understood, especially in native tissue. We examined the action of key neurotransmitters: puri...

متن کامل

Frequency encoding of cholinergic- and purinergic-mediated signaling to mouse urinary bladder smooth muscle: modulation by BK channels.

In the urinary bladder, contractions of the detrusor muscle and urine voiding are induced by the neurotransmitters ACh and ATP, released from parasympathetic nerves. Activation of K(+) channels, in particular the large-conductance Ca(2+)-activated K(+) (BK) channels, opposes increases in excitability and contractility of urinary bladder smooth muscle (UBSM). We have shown that deleting the gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016